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Model-based monitoring and diagnosis
of a satellitelbased instrument.

Andr_ Bos,* JSrg CaJlies, and Alain Lefebvre. t

Abstract

For about a decade model-based reasoning has been propounded by a

number of researchers. Maybe one of most convincing arguments in favor

of this kind of reasoning has been given by Davis in his paper on diagno-

sis from first principles (Davis 1984). Following their guidelines we have
developed a system to verify the behavior of a satellite-based instrument

GOME (which will be measuring Ozone concentrations in the near future

(1995)). We start by giving a description of model-based monitoring. Be-

sides recognizing that something is wrong, we also like to find the cause

for misbehaving automatically. Therefore, we show how the monitoring

technique can be extended to model-based diagnosis.

1 Introduction

1.1 Testing complex systems

Before space systems, like satellite-based instruments, go into orbit, it is impor-

tant to validate the system's functioning thoroughly. However, as systems be-

come more and more complex, the effort needed to verify these systems becomes

enormous. Traditional testing methods validate system behavior by applying

test inputs and comparing observed to expected output behavior. Care must be

taken that all possible interactions between subsystems are covered. Unfortu-

nately, experience shows that it is nearly impossible to do complete testing, and

most systems possess some unknown -and unwanted- behavior. In these cases it

is very important to know if the system (e.g., when it is in orbit) behaves cor-

rectly. For example, a faulted component of an Ozone measuring instrument may

influence the measurements negatively. So, it is important to recognize malfunc-

tioning as soon as possible. However, for a human controller it is just impossible
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to monitor system's performance in every detail. An automatic system is needed

to keep track of the system.

In this paper we describe a technique to validate systems: model-based mon-

itoring and diagnosis. Note that there is no intent to replace existing test tech-

niques; it is an additional method that is used to detect the errors that remain

after traditional testing and when the system is in operation. The test method

here presented is model-based. That is to say, a behavior description is used to

predict how the system should behave, and the predictions are compared to the

actual observations. If an inconsistency arises, then it is assumed that something

is wrong and an error is signaled.

1.2 GOME

We have applied the test method to verify the GOME instrument (ESA 1993).

GOME, short for Global Ozone Monitoring Experiment, is an instrument that

will be mounted on ESA's ERS-2 satellite. Its purpose is to measure Ozone

concentrations in the earth's atmosphere. This is done by comparing the sun's

spectrum measured directly to the spectrum of sun light that has been reflected

and travelled twice through the earth's atmosphere.

Apart from a diode array for measuring the spectra, the instrument has a

number of supporting subsystems. Such as a command interpreter for interpreting

and executing of commands send by ground control; a data acquisition unit for

sending the measured spectrum and house keeping data to ground control; a

mirror unit for scanning the earth's atmosphere; a heating unit for temperature

control; etc.. All in all, GOME is a rather complicated system and its behavior is

hard to verify.

1.3 Overview of the paper

In Section 2, we start by describing a monitoring system that is used to verify

GOME's behavior. A monitoring system checks if a system is functioning cor-

rectly, however, the cause of a malfunctioning is not reported. This is part of the

functionality of a diagnostic system. In Section 3, we extend the description to

a diagnostic system that is currently being implemented for GOME. Finally, in

Section 4, some conclusions are drawn and future work is described.

2 Monitoring

As already described we have implemented a model-based form of monitoring.

We assume that something is wrong whenever the model's predictions are con-

tradicting the observations of the system's behavior. That is, a description of

normative behavior is used to verify the system.
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In this section we will (1) formalize the method of model-based monitoring in

a way so that it is easily extended to model-based diagnosis, see Section 3; (2)

describe the implementation of it; and (3) discuss some of the results of applying

a monitor program to the GOME instrument.

2.1 Characterizing model-based monitoring

In this section we will establish a conceptual framework for defining model-based

monitoring. Central in this framework, and also in that for diagnosis, is that we

view a description of system behavior (a model) as a formal system. That is,

the behavior description is a set of sentences taken from some kind of language

with a logic attached. It is important to note that we do not restrict ourselves to

predicate or first-order logics. To the contrary, we view formal systems in which

algebraic or differential equations can be expressed as important candidates for

logics in which the behavior of a system can be expressed. Viewing the behavior

description as a formal system eases the definition and implementation of mon-

itoring and diagnostic system, but may also introduce notations that may seem

awkward in the context of system theory. For example, a numerical integration

step is -in the logical context- considered as a derivation rule, e.g. Euler's can
be stated as:

x(t) = C1, with G _ R",
z'(t)= Ax(t)

x(t + 1)= AC1 + C1,

with x(t) C R" and A E R _ x R _. The derivation of a from a set E is denoted

as:

E [- _r.

Consider for example the case of dynamical simulation. Let SIMMOD denote

a dynamical simulation model and INIT its initial conditions both expressed in

some formal system with Euler's integration step as derivation rule. Then the set

PRED = {p : SIMMOD U INIT k p}

contains all the predictions that can be obtained by applying the derivation rules

of the formal system.

Using the logical terminology, we define a system to be monitored as follows:

Definition 2.1 A system to be monitored is a triple (OBS, MODULES, SD_),
wh e re

• OBS, the observations, is a finite set of observations each of the form

v = (value),

where v is a variable, and (value) a value of appropriate type.
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MODULES, the modules, is a finite set of so-called modules. Modules are

introduces to denote subsystems that are supposed to be functioning inde-

pendently. For each module a separate set of behavior relations is defined,

as will be explained next.

SDm, the system description (for monitoring), is a finite consistent set of

behavior relations for each module. The general form of a modular behavior

specification is as follows:

M D (behavior relations for M),

where M E MODULES and D denotes material implication (if..., then

,,o)*

Due to a possible incomplete knowledge of the system, e.g. the current state

is not known, we allow alternative behavioral relations per module; however,

exactly one of these behavioral relations must be true. That is, each instance

of "(behavior relations for M)" is of the form:

rell @... _ tel,,,

where reIi is e.g. an algebraic or differential equation, and _ra @ cr2 denotes

the fact that either _rl or _r2 is true, but not both 1. @ is also called a choice

operator.

When monitoring a system, an error message must be generated whenever the

predications made by the system description are contradicting the observations.

A contradiction occurs whenever a prediction assigns a value to a variable that is

incompatible to the observations 2. Deciding whether two values are incompatible

is problem and type dependent. For example, for real-valued variables normally

a range on the values is defined; for variables with a discrete domain the values

have to match exactly. Furthermore, because the different modules are assumed

to be working independently, we can give an indication where something is going

wrong by stating the module responsible for generating the contradiction. This

leads to the following.

Definition 2.2 Let (OBS, MODULES, SDm) be a system to be monitored. An

error message for a module M E MODULES is generated whenever

SD,_ U OBS u { M }

is inconsistent 3 .

10.1 _ 0"2 is an abbreviation for 0"1 V0"_, and -_0"xV -_0"2.
2Because SD,n is assumed to be consistent, contradictions may only occur due to a mismatch

between prediction and observations.
3Note that presence of M in the formula enables the use of its behavior relations.
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It is important to note that we assume that only one module -and no combi-

nation of modules- is responsible for a contradiction. In other words, multiple

faults (de Kleer and Williams 1987) are not captured by this definition (this will

be handled in the section on diagnosis, see Section 3). Note, however, that during

a monitoring session more than one module may generate an error message. If

we recall the initial purpose of the monitoring system, viz. the verification if a

system functions correctly, the restriction to single faults is not that serious. We

assume that the modules are chosen so that one module captures the behavior of

a subset of the system constituents. On the occurrence of an inconsistency, we

know that the culprit is to be found within that subset.

2.2 Implementation

We have implemented a monitoring system to verify GOME's behavior. In Fig-

ure 1 the overall layout of the program is given. To simplify the implementation,

archive data

U___xpected behavior

monitor

error messages
and behavior summary

Figure 1: Monitoring system for GOME

the observations (OBS) of GOME's behavior are first stored on (Bernoulli) disks

before GOME's operation is analyzed. A snapshot (the values of all GOME's

variables) is taken each 1.5 sees. and is stored in what is called archive data.

The contents of a single snapshot is called a packet. Packet numbers are used to

address packets.

The expected behavior comprises the system description per module 4. SDm

can be considered as a kind of simulation model of the system where the be-

havior relations are centered around the modules. Note that SD,_ is not truly

a simulation model because the choice operator introduces alternative behaviors

per module. So, no conclusive predictions can be made using SDm; it can only

be used to do a consistency check.

4In the current implementation the program and the system description is coded in

C (Kernighan and Ritchie 1978). The behavioral relations are decoded as procedures; a more

elegant -at least viewed from a logical and a maintenance perspective- implementation would

use a declarative description of both the behavior and the derivation (e.g. Euler's rule) relations.
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The monitor program reads each packet from the archive data (OBS), 'simu-

lates' each module M using the expected behavior (SD,,,) and checks if

SO,,, U OBSU {M}

is inconsistent. If so, an error message with some additional information is

printed.

The following example gives some feeling for the implementation of the mon-

itoring program.

Example 2.1: Consider the operation of the setting of the mirror's mode.

Informally, SD,,, contains relations that describe the following behavior:

If a command that sets the mirror in swath mode is in the current

packet, then after N packets s (= N × 1.5 sees.) the mirror position is

changing according to a linear relation defined on the packet number.

Now, if a mirror-setting command is found in the current packet, the monitor

program checks after a delay of N packets the mirror position. [3

As an extra, the monitor program prints for each packet -what we call- a

behavior summary with the most important status information of GOME's opera-

tion. For example, the behavior summary contains the last submitted command,

the mirror's and coolers' mode, and so on. This extra information comes in handy

when the cause for malfunctioning is searched (either manually or automatically

with a diagnostic system).

2.3 Results

The monitoring system as described above has been applied to the GOME in-

strument. It should be clear that a monitoring instrument does not perform a

full functional test. Types of behavior that are not enabled during the verifi-

cation process will not be tested for correct functioning. As we have already

mentioned, it is an additional method of testing. Although GOME was tested

fairly intensively, the monitoring program did expose a number of faults. To give

some feeling for the type of faults, we name a few: (1) The integration time (for

measuring sun light) was set incorrectly on a number of occasions; (2) synchro-

nization faults of timers on receipt of a command; (3) a too slow operating timer;

(4) inaccurate scan mirror positioning during swath mode; (5) documentation

faults (other process variables are measured than documented); (6) etc..

3 Diagnosing

The monitoring program has been proved to be useful for validating the correct

functioning of GOME. However, when an error message is generated, the cause

5Actually, this number N depends on the current packet number modulo 4.
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for misbehavinghas to be searchedmanually. It is interesting to havea system
that not only recognizesthat something is wrong, but also is able to find the
causeof misbehaving.This functionality is part of diagnostic systems.

3.1 Characterization

Similar to model-based monitoring, the characterization of model-based diagnosis

uses a logical terminology, see e.g. (Reiter 1987; de Kleer and Williams 1987;

de Kleer and Williams 1989).

Definition 3.1 A system to be diagnosed is -again- a triple ( OBS, COMP, SD),

where

OBS, a finite set of observations, defined as in the case of monitoring.

COMP, a finite set of components. Components are akin to modules, how-

ever, behavior is assigned to individual components. In this way, it is pos-

sible to extract responsible components for a discrepancy in observed and

expected behavior.

SD, the system description (for diagnosis}, similar to the model-based mon-

itoring case, except that the behavior relations are defined per component.

In the diagnostic case we assume that a component working in a mode. A

mode represents a physical 'condition' (so to speak} of a component. For

example, we have:

- A normal mode, i.e. the component is working as intended.

- One or more fault modes, i.e. the -faulted- component is working ac-

cording to a known behavioral relation.

- An abnormal mode, i.e. the component is not working as intended but

we have not anticipated its fault behavior as in the previous case.

Now, the general form of a behavior relation is:

Mode(c) D (governing eq.),

where c C COMP, and "(governing eq.)" describes how the component's

variables are governed when c is working in mode Mode(c). If the Mode(c)

is the abnormal mode, then the equation is such that no predictions can be
made.

To each mode of a component a prior probability is assigned. This prior

probability is used during the computation of diagnoses as will be explained

shortly.
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SD can be considered as a component-centered simulation model. That is,

behavior relations are given per component, so components responsible for a

discrepancy can be isolated. In GOME's case we have the following.

Example 3.1: We consider two components: c,,, and cc representing the

mirror unit and command interpreter, respectively. A normal functioning mirror

unit (c,_) can scan the earth's atmosphere either at a fixed position or rotating:

• At a fixed position, indicated by the predicate fized(cm, t) being true for

all time instances t the mirror is fixed. The position of the mirror at time

instance t has a constant value: pos(t) = mk 6.

• With a scan angle, indicated by the predicate swath(c,,,, t) being true for

all time instances t the mirror is rotating. The position of the mirror at

time instance t has a value that is linearly dependent on t described by the

function f(t) 7.

In Figure 2 the behavior of the mirror is given.

Normal( c,, ) D

1 xed(cm,t) pos(t) = m,
V
swath(cm,t) D pos(t)=f(t)

Figure 2: Mirror unit behavior

The command interpreter cc sets, among other things, the predicates fixed(c,,,, t)

and swath(c,,,, t) if a corresponding command has been received s, see Figure 3.
[]

Now a diagnosis is an assignment of modes such that no predictions can be

made that are contradictory to the observations. We use the following definitions.

Definition 3.2 A mode assignment is a conjunction of mode predicates for all

c E COMP:

A Mode_(c).
e COMP

SThis is simplified, actually the position can be controlled.

rAgain this is simplified; it is possible to control the maximum angle of rotation.

sit is assumed that once the predicate fixed(cm, t) or swath(cm, t) is believed, it stays true

until is explicitly asserted false.
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Normal(co)

cmnd = fixed,,,irroT

V

cmnd = swathmirror

D fixed(c,,,, t + N)A

--,swath(c_, t + N)A
, • .

D swath(c,,,, t + N)A

--,fixed(c,,,, t + N)A

Note that N denotes the delay after which a scan mirror command is issued.

Figure 3: Command interpreter behavior

Definition 3.3 A diagnosis for a tripel ( OBS, COMP, SD) is a mode assignment

F such that:

SOU OBSU {F}

is consistent.

Recall that assuming a mode assignment (F) results in a set of of governing

equations describing expected behavior. If this set of equations predicts a value

that is inconsistent with the observations, the assumption represented by F must

be wrong. That is, the mode assignment F is not a diagnosis.

In general there are multiple diagnoses and computing all diagnoses can be

very time consuming. However most of the times we are only interested in the

most probable (de Kleer and Williams 1989). Using the prior probabilities of

the modes we first test the most likely mode assignments for consistency. If the

consistency test succeeds, the posterior probability can be computed by incorpo-

rating the number of observations that are explained by the mode assignment 9

as is described in (de Kleer and Williams 1989).

If a highly probable diagnosis F contains one or more fault (or abnormal)

modes, it is likely that the corresponding components are the culprit.

Example 3.2: Consider the example of the mirror unit and the command

interpreter again. Assume that we observe that the mirror is not moving af-

ter a swath command has been given. Using only these observations, we can

only assume that either (or both) the mirror unit or the command interpretor is

malfunctioning. However, the command interpreter controls other components

9Note that the mode assignment which assigns the abnormal mode to all components yields
always a consistent theory, but does not explain any observation.
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as well. So, if we see that, e.g., the integration time is set correctly, then it is

less likely that the command interpreter is malfunctioning and only the diagnosis

stating that the mirror unit is the culprit remains. []

Implementation The implementation of the diagnostic system that is cur-

rently being under development is based on the work of de Kleer, Williams and

Forbus, see (de Kleer and Forbus 1993). We make use of a best-first search

algorithm in order to compute the most probable diagnoses, see (de Kleer and

Williams 1989) for a detailed description.

3.2 Multiple models

The problem with contemporary diagnostic systems is twofold: (1) It is hard to

construct a behavior model (SD); and (2) the computation of diagnoses is very
hard.

Concerning the construction of a behavior model, one has to realize that in

order to obtain non trivial diagnoses more than one aspect of system behavior

must be described. For example, as Davis (Davis 1984) points out, for the de-

tection of a solder-bridge between two pins of an IC, not only a electrical but

also a geometrical model is needed. That is, one needs different views on system

behavior. In case of space systems a lot of aspects, like electrical, mechanical,

thermal, etc., play an essential role in the behavior of a system.

Concerning the computational hardness. In general, the computation of a set

of most probable diagnoses is exponential in the number of components/relations

in the behavior description. This means that there is no guarantee that a set of

most probable diagnoses can be computed in acceptable time.

As solution for both problems approximations of behavior descriptions are

propounded, see e.g. (Struss 1992; Bos 1994; Nayak 1994). There are two special

types of approximations: weak and strong abstractions.

We start with weak abstractions.

Definition 3.4 A system description SD1 is weaker than SDo (the more accurate

description), if everything that can be derived from SD1 can also be derived from

SDo.

Weak abstractions can be used to construct views, i.e., models describing a single

(or restricted set of) aspect of behavior. Other examples of weak abstractions

include qualitative reasoning schemes (de Kleer and Brown 1984; Forbus 1984)

for continuous systems, and temporal abstractions (Hamscher 1991) for digital

systems. Weak abstractions can be used to speed-up reasoning using the following

property:
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Property 3.1 If a combination of mode assignments (a conflict set) yields an

inconsistent set (see Definition 3.3) for the weaker description, then that combi-

nation will also yield an inconsistent set for the more accurate description (Bos

1994).

In general, reasoning over an abstraction is less costly than over the more accurate

description. So, we may start reasoning over the abstractions to get (relatively)

fast but coarse 1° diagnoses. If we like to refine the answers, we know that the

conflict set found solar need not be considered again. In this way we can prune

the search space induced by the more accurate description.

Strong abstractions are defined asll:

Definition 3.5 A system description SD1 is stronger than SDo (the more accu-

rate description), if everything that can be derived from SD1 can also be derived

from SDo.

Strong abstractions can be applied where the original description allows for a

choice between two of more outcomes. For example, if the original model describes

that either in this time instance or in the next a certain event occurs, the strong

abstraction states one of the possibilities. Strong abstractions can also be used

to speed-up reasoning by using the following.

Property 3.2 If a combination of mode assignments yields an consistent set,

i.e. a diagnosis (see Definition 3.3), for the stronger description, then that com-

bination will also be a diagnosis for the more accurate description (Bos 199_).

So, if one chooses one of the outcomes by selecting a strong abstraction and no

contradictions are found, then in the more accurate description contradictions
will also not be found.

In (Struss 1992; Nayak 1994; Bos 1994) heterogenous frameworks for multiple

models are propounded. In these frameworks it is possible to have multiple

abstractions of a given models and these abstractions can be stated in different

languages. For example, both a qualitative model (de Kleer and Brown 1984;

Forbus 1984) and a hierarchical abstraction (Hamscher 1991) can be used as an

approximation of, say, a differential model. So, a modeler can select the formalism

best suited for describing (an approximation of) system behavior. The result is a

partial order on system descriptions, see Figure 4 for an example. In this figure,

SDi _ SDj denotes the fact that SDi is an (either a weak or strong) abstraction

of SD3.

1°Because the abstractions are weaker than the accurate descriptions we may, for example,

oversee a diagnosis.

1lit is important to note that stronger is not equivalent to more accurate.
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SD_ SDb

SDd

sos

SDc

/
SD_

SDg SDh

Figure 4: Abstractions of system descriptions

4 Conclusions and future work

Conclusions We have developed a monitoring system using a model-based

technique. Such a system can be of great help for verifying system behavior.

We have applied the monitoring system to the GOME instrument and revealed a

number of discrepancies in expected and observed behavior. However, a monitor-

ing system does not pinpoint the cause of malfunctioning; therefore, a diagnostic

system should be used. A diagnostic system can be defined in a way similar to

monitoring systems.

Future work We are currently developing a diagnostic system for GOME. The

system will make use of abstractions in order to speed-up reasoning and to de-

scribe different aspects of system behavior.
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